激光二极管抽运低温 Yb:YAG 再生放大器

李 响 王江峰 李学春 卢兴华 潘 雪 黄大杰

(中国科学院上海光学精密机械研究所,上海 201800)

摘要 通过对 Yb:YAG 晶体荧光谱线的分析,讨论了其低温条件下的增益特性。利用激光二极管作为抽运源,采 用背向端面抽运方式,使用掺杂原子数分数为 8%的片状 Yb:YAG 晶体,搭建了一台低温条件下工作的再生放大 器。通过小能量信号光注入,在一90 ℃的低温下,可以得到重复频率 10 Hz,脉宽 10 ns,能量 10.3 mJ 的激光脉冲 输出,放大倍数达 10⁷ 倍。

关键词 激光器;Yb:YAG 晶体;再生放大器;激光二极管
 中图分类号 TN248.1
 文献标识码 A doi: 10.3788/CJL201138.1102010

Laser Diode Pumped Cryogenic Cooled Yb: YAG Regenerative Amplifier

Li Xiang Wang Jiangfeng Li Xuechun Lu Xinghua Pan Xue Huang Dajie

(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy Sciences, Shanghai 201800, China)

Abstract The fluorescence spectrum of Yb: YAG crystal is analyzed and its gain characteristics are discussed. A regenerative amplifier is built, which works under a low temperature. The gain material is Yb: YAG crystal with the doping concentration of 8% back-end pumped by a laser diode. Through a signal pulse injection, we can get a 10.3 mJ laser pulse output with the repetition rate of 10 Hz and the pulse width of 10 ns at -90 °C, and the magnification exceeds 10^7 .

Key words lasers; Yb: YAG crystal; regenerative amplifier; laser diode OCIS codes 140.3280; 140.3615; 140.3480; 140.3580

1引言

近年来,由于高功率半导体激光器技术的飞速 发展,特别是 InGaAs 激光二极管(LD)性能的发展 以及成本的降低^[1~3],使得 LD 抽运固体激光器 (DPSSL)的研究取得了重大突破^[4~7]。由于半导体 激光器具有效率高、光束质量好、结构紧凑等特点, 所以自从半导体激光器发明以来,使用其作为固体 激光器的抽运源一直是研究的热点。DPSSL 技术 因其可以实现高重复频率的高能量、高效率稳定输 出,成为惯性聚变能源(IFE)驱动器研究的重要技 术途径。单发能量百焦耳、平均功率千瓦级的 DPSSL 装置及相关技术相继在美、日、法、德等国家 得到广泛研究^[8]。

Yb:YAG 晶体具有量子效率高、热传导率高、

可生长尺寸大以及掺杂浓度高等优点,更适合向高 重复频率、大能量器件方向发展^[9]。在早期,由于闪 光灯抽运以及 LED 抽运均不能满足 Yb: YAG 晶体 对高抽运阈值的要求,使它的应用和发展受到了限 制^[10]。LD 可以输出大的功率密度,用作抽运源能 够很好地解决这个问题。法国 LULI 实验室从 2001 年开始,便采用 Yb: YAG 晶体着手10 Hz, 100 J的纳秒级 DPSSL 研究(Lucia 激光装置),并且 已经取得了进展。目前美国 Mercury 和日本 Halna 研究小组也都在考虑在适当的低温条件下使用 Yb: YAG 作为增益介质的可行性。

本文选择 Yb: YAG 晶体作为增益介质,利用真 空低温制冷装置对其进行温度控制,通过 LD 背向 端面抽运方式,实现了一台 1030 nm 波段的纳秒级

收稿日期: 2011-05-10; 收到修改稿日期: 2011-08-02

作者简介:李 响(1985—),男,硕士研究生,主要从事激光二极管抽运固体激光器及再生放大器等方面的研究。 E-mail:jfslxh@126.com

导师简介:李学春(1972—),男,研究员,博士生导师,主要从事激光技术与光纤应用等方面的研究。 E-mail: lixuechun@siom.ac. cn 激光脉冲再生放大器,通过注入 10 Hz,120 pJ, 10 ns的信号脉冲光,可以获得高于 10 mJ 的放大脉 冲能量输出,增益超过 10⁷。

2 Yb:YAG 的特性

Yb³⁺ 是最简单的激活离子,其构型为⁴f₁₃,仅有 两个电子态,即基态²F_{7/2}和激发态²F_{5/2},不存在激发 态吸收和上转换^[11],并且抽运能级靠近激光上能 级,量子亏损很低,仅有 9%,可极大地降低掺杂材 料中的热负荷,获得高的光转换效率。

图 1 为 Yb³⁺离子的能级结构图。在配位场作 用下,基态与激发态产生 Stark 分裂,形成准三能级 或四能级的激光运行机构。激光过程发生在激发 态²F_{5/2}最低的子能级和基态²F_{7/2}的第三个子能级 间,上能级荧光寿命较长,有利于能量的存储,激光 波长为 1030 nm。如图 2 所示,Yb³⁺离子的主吸收 峰有 3 个,分别位于 913,938,968 nm。在 938 nm 附近,吸收带的强度和宽度是最大的,通常作为激光 抽运带。

图 2 Yb³⁺的吸收谱线与发射谱线

950

1000

Wavelength /nm

1050

1100

900

850

Fig. 2 Absorption and emission spectra of Yb³⁺

在常温下,Yb:YAG 晶体是一个准三能级系统,当温度降低时,转变为四能级系统,抽运阈值降低,可以获得更高的斜率效率。图 3 为实验中测得的不同温度下 Yb:YAG 晶体的荧光发射谱线,在

1030 nm 波段处,发射峰受温度变化影响比较明显, 随着温度的降低,发射峰的幅度逐渐升高,谱带变 窄。利用荧光谱线,可以对 Yb:YAG 晶体的受激发 射截面进行计算:

$$\sigma_{\rm em}(\lambda) = \frac{1}{8\pi} \frac{\lambda^5}{n^2 c \tau} \frac{I(\lambda)}{\int I(\lambda) \lambda d\lambda},$$
 (1)

式中 $I(\lambda)$ 为Yb³⁺的发射谱线强度,n为折射率, τ 为 上能级寿命,c为真空中的光速。而小信号增益系数 与受激发射截面成正比:

$$g_0(\lambda) = \Delta N_{\sigma_{\rm em}}(\lambda), \qquad (2)$$

式中 ΔN 为粒子反转数。通过分析可以得出,温度 越低,Yb:YAG 晶体的增益特性越好,越有利于信 号光的放大。但研究表明,随着温度降低、小信号增 益系数增大,Yb:YAG 晶体的放大自发辐射(ASE) 也会变得更加强烈,对激光器以及放大器产生影响。 许多学者对 ASE 的产生与控制进行了分析,本文不 再开展这方面的研究。

3 低温再生放大器装置结构

3.1 低温控制系统

Yb:YAG 晶体在低温条件下会表现出比其在 常温条件下更加优异的光学增益性质,因此实验中 对Yb:YAG 晶体采用了温度可控的制冷方式,以获 得更好的放大效果。

图 4 为 Yb: YAG 晶体的冷却系统。通过控制箱 调节液氮容器内的气压,使液氮流入管道,进入到真 空盒内的液氮经过管道循环将热沉铜块上的热量带 走,使其降温。热沉铜块上的温度传感器可以将测 试的温度反馈回控制箱,控制箱控制低温电磁阀的 开关,调节液氮的流量。冷却系统能够将热沉铜块 温度稳定在 - 170 °C ~ - 30 °C,精度为±1 °C。 Yb: YAG 晶体被紧密固定在热沉上,为了使晶体与 热沉有更好的接触,热量能够更快地传导到热沉上, 晶体与热沉之间加了一层铟膜。图 5 为真空盒内部 结构示意图,两个光学窗口分别用于信号光与抽运 光的通过,前窗口镀双面 1030 nm 增透膜层,后窗 口镀双面 940 nm 增透膜层。其照片如图 6 所示。

图 4 冷却系统结构示意图

图 5 真空盒结构示意图

Fig. 5 Schematic of the vacuum box structure

3.2 再生放大器的结构

图 7 为低温再生放大器的结构示意图。10 Hz, 120 pJ,10 ns 窄带种子激光信号脉冲经由光纤注入 再生放大器。通过调节偏振控制器,使注入光路中 的信号光 P 方向偏振分量最大。S1 为隔离器,避免 光路中的反射光反馈回信号源,干扰系统。S2为9: 1分束器,将信号光分为两部分,10%端口用于实时 监测信号光的注入状态。法拉第旋光器与 λ/2 波片 组成的隔离器能够控制光束偏振态,防止残余的放 大光返回耦合到光纤,将光纤破坏。光路中透镜 L1 与L2的作用是使信号光与谐振腔内本征模式在模 式上达到匹配,从而以最高效率耦合进入腔内。信 号脉冲经由薄膜偏振片 TFP。以S方向偏振进入再 生放大腔后,通过同步机控制,在脉冲第二次通过电 光开关之后开启电光开关,使脉冲光以 P 方向偏振 锁闭在腔内振荡,并通过调节电光开关的高压开启 门宽,控制脉冲光在腔内的往返程数,得到最高的能 量放大后再次通过 TFP₃ 反射导出腔外。腔镜 M₂ 是一块掺杂原子数分数为8%,尺寸为 ø10 mm× 2 mm的片状 Yb: YAG 晶体,其后端面镀有 940 nm 增透和 1030 nm 全反的双色膜层。

图 7 Yb: YAG 再生放大器的光路示意图 Fig. 7 Schematic of Yb: YAG regenerative amplifier

实验中采用美国 Nlight 公司生产的 LD 模块对 Yb:YAG 晶体进行背向端面抽运,波长 940 nm 的 脉冲光通过孔径为 400 μm 的光纤输出,经过耦合 透镜组聚焦到 Yb:YAG 晶体上对增益介质进行抽 运,图 8(a) 是晶体上的抽运光斑能量分布图, 图 8(b)为抽运光斑的能量一维分布。为了实现再 生放大器的高效率基模输出,需要保证抽运光的分 布与谐振腔模式体积匹配,使抽运体积与腔内基模之 间达到最大的交叠。实验中晶体中心的抽运光斑半 径为1 mm,抽运光与腔内基模光半径之比为 1.18。

图 8 (a)抽运光的空间能量分布;(b)抽运光空间能量的一维分布

Fig. 8 (a) Spatial intensity distribution of pump laser; (b) one-dimensional intensity distribution of pump laser

4 实验与分析

4.1 模拟计算

实验前期,对放大后的脉冲能量进行了理论模 拟,在假设能级弛豫时间远小于脉冲宽度的情况下, 可以通过速率方程得到迭代关系:

 $E_{k} = TE_{s} \ln \{G_{k-1} [\exp(E_{k-1}/E_{s}) - 1] + 1\}, (3)$ 式中

$$G_{k-1} = \exp\left(\sigma \int_{0}^{L} N_{k-1} \mathrm{d}x\right), \qquad (4)$$

 E_k 为脉冲在腔内放大 k 程的能量密度, T 为腔内单程 透射率, E_s 为饱和能量密度, N_k 为第 k 程前介质内粒 子反转数密度, σ 为受激发射截面。引入增益参量 $g_k = \ln G_k$, G_k 代表第 k 程前介质的单程增益, 则有

$$g_{k} = \sigma \Big(\int_{0}^{L} N_{k-1} \, \mathrm{d}x - \frac{\Delta E_{k}}{h\nu} \Big), \qquad (5)$$

式中 $\Delta E_{k} = \frac{E_{k}}{T} - E_{k-1}, \Delta E_{k}$ 即第k程放大过程中激 光脉冲从介质中提取的能量。进一步简化可以得到

$$g_k = g_{k-1} - \frac{\Delta E_k}{E_s}.$$
 (6)

临界条件为 $g_0 = \sigma \int_0^L N_0(x) dx$, $N_0(x)$ 为初始上

能级粒子数分布^[12]。图 9 是模拟计算得到的被放 大脉冲能量密度与放大程数的关系。可以看出,开 始阶段脉冲能量很小,被放大后的能量密度随放大 程数的增加而呈指数关系增大;随着脉冲能量的增 大,出现增益饱和现象,Yb:YAG 晶体的单程增益 逐渐降低;当单程增益降低到与单程损耗相等时,可 以得到最大的能量输出。如图 9 所示,在抽运功率 110 W,抽运时间 1.8 ms的情况下,脉冲信号光在 腔内往返 32 程,得到最大的光放大,其能量密度可 达到 605 mJ/cm²。

图 9 能量密度及增益系数随往返程数增加的变化曲线 Fig. 9 Energy density and gain coefficient versus number of round trips

4.2 实验结果

实验中在晶体温度为一90 ℃,脉冲抽运时间为 1.8 ms,重复频率为 10 Hz 的工作状态下,注入 120 pJ,10 ns 的脉冲信号光进行放大。图 10 是在 不同抽运功率时测试的再生放大器输出能量曲线。 LD 平均功率 110 W 抽运时,再生放大器最高输出 能量为 10.3 mJ,总增益超过 10⁷。输出能量分布如 图 11 所示,光束质量因子 $M_x^2 = 1.24$, $M_y^2 = 1.18$ 。 从图中可以看出,输出能量与抽运功率近似呈线性 增长关系,所以如果继续提高抽运功率,将会得到更 大的输出能量。

由于增益饱和效应的存在,经过再生放大器多 程放大后,输出脉冲的时域波形出现前沿高后沿低 的方波扭曲现象,这是由于脉冲前沿经过 Yb:YAG 增益介质时迅速消耗上能级粒子数目,脉冲后沿得 不到足够的上能级粒子数,从而使增益减小。图 12 为脉冲信号光放大前后的时域波形对比图,测得输 出光方波扭曲度(SPD)为 1.5。

图 11 (a)输出脉冲的空间能量分布;(b)输出脉冲空间能量的一维分布

Fig. 11 (a) Spatial intensity distribution of output laser; (b) one-dimensional intensity distribution of output laser

图 12 (a)信号脉冲的时间波形;(b)输出脉冲的时间波形 Fig. 12 (a) Time waveform of signal laser pulse; (b) time waveform of output laser pulse

5 结 论

通过不同温度下 Yb: YAG 晶体的荧光谱线,对 其增益特性进行了分析。在实验中,利用液氮制冷 装置,将 Yb: YAG 晶体控制在一90 ℃,采用 LD 背 向端面抽运的方式对其进行抽运,将 10 Hz,120 pJ, 10 ns 的窄带脉冲信号光注入再生放大器,随着抽运 能量的增大,输出的放大脉冲能量近似线性增大。 当 LD 功率为 110 W,抽运时间为 1.8 ms 时,得到 10.3 mJ 的放大能量输出,放大倍数为 10⁷ 倍。通 过对低温 Yb: YAG 再生放大器的研究,为高重复频 率高功率激光器驱动源的实现提供了一种新的 思路。

参考文献

- Lin Hongyi, Tan Huiming, Tian Yubing *et al.*. LDA endpumped acousto-optics *Q*-switched Yb: YAG 1.03 μm laser[J]. *Laser & Infrared*, 2008, **38**(1): 25~27
 林洪沂, 檀慧明, 田玉冰等. LDA 端面泵浦声光调 *Q* Yb: YAG
- 1.03 µm 激光器[J]. 激光与红外, 2008, **38**(1): 25~27
- 2 Zhang Yongdong, Wei Zhiyi, Zhang Zhiguo et al.. Laser diode pumped efficient continuous wave and picoseconds Yb:YGG laser [J]. Chinese J. Lasers, 2011, 38(2): 0202005

张永东,魏志义,张治国等.激光二极管抽运的高效率 Yb: YGG 激光器的连续及锁模运转[J].中国激光,2011,38(2): 0202005

- 3 Nie Jianping, Li Long, Shi Peng et al.. Thermal effect of Yb: YAG rod end-pumped by diode laser[J]. Optical Technique, 2009, 35(3): 354~362
 聂建萍,李 隆,史 彭等. 激光二极管端面泵浦 Yb:YAG 圆 棒热效应研究[J]. 光学技术, 2009, 35(3): 354~362
- 4 Chen Yihong, Su Yong. Study of high-power laser diode-pumped solid-state laser[J]. Chinese J. Lasers, 2007, **34**(s1): 319~321

陈义红,苏 勇.大功率激光二极管抽运固体激光器的研究[J]. 中国激光,2007,**34**(s1):319~321

- 5 Wang Sha, Chen Jun, Liu Chong *et al.*. Theoretical and experimental research of end pumped quasi-three-level Yb:YAG laser[J]. *Chinese J. Lasers*, 2009, **36**(1): 23~27
 汪 莎,陈 军,刘 崇等. 纵向抽运准三能级 Yb:YAG 激光 器的理论模型及实验研究[J]. 中国激光, 2009, **36**(1): 23~27
- 6 Ma Huijun, Li Xiaoli, Ji Jianghua *et al.*. Investigation on the performance of high repetition laser diode pumped Nd: YAG laser amplifier[J]. *Chinese J. Lasers*, 2005, **32**(10): 1309~1312
 马惠军,李小莉,纪江华等.高重复率半导体激光抽运 Nd: YAG 放大器激光特性的实验研究[J]. 中国激光, 2005, **32**(10): 1309~1312
- 7 J. D. Kmetec, T. S. Kubo, T. J. Kane *et al.*, Laser performance of diode-pumped thulium-doped Y₃Al₅O₁₂, (Y, Lu)₃Al₅O₁₂, and Lu₃Al₅O₁₂ crystals [J]. Opt. Lett., 1994, **19**(3): 186~188
- 8 Wang Mingzhe, Ding Lei, Luo Yiming *et al.*. Recent progress of laser diode-pumped solid-state laser drivers for inertial fusion energy[J]. Laser & Optoelectronics Progress, 2008, 45 (10): 56~63

王明哲,丁 磊,罗亦鸣等.惯性聚变能领域的激光二极管抽运 固体激光装置[J].激光与光电子学发展,2008,**45**(10):56~63

- 9 Yu Haiwu, Xu Meijian, Duan Wentao *et al.*. Research progress of laser drivers for inertial fusion energy [J]. *Laser &*. *Optoelectronics Progress*, 2006, **43**(9): 55~62 於海武,徐美健,段文涛等. 惯性聚变能源激光驱动器研究进展 [J]. 激光与光电子学进展, 2006, **43**(9): 55~62
- 10 T. Y. Fan, D. J. Ripin, R. L. Aggarwal et al.. Cryogenic Yb³⁺-doped solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 448~459
- 11 Qiu Hongwei, Mao Yanli, Dong Jun. Progress of the research on Yb:YAG[J]. Chinese J. Quantum Electronics, 2002, 19(1): 1~5
 1~5
 成字体 毛ీ範疇 黃 檢 激光見体材料 Yb:YAG 的研究課展

邱宏伟,毛艳丽,董 俊. 激光晶体材料 Yb: YAG 的研究进展 [J]. 量子电子学报,2002,19(1):1~5

- 12 Wang Jiangfeng. Research on Highly Stable Nd : Glass Regenerative Amplifier [D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2008. 19~22
 - 王江峰.高稳定钕玻璃再生放大技术研究[D].上海:中国科学院上海光学精密机械研究所,2008.19~22

栏目编辑: 宋梅梅